

The Minerva Cluster

User’s Guide
Version 1.0

Miguel Couceiro and Luís Santos
March 15, 2017

Instituto Superior de Engenharia de Coimbra

Instituto de Investigação Aplicada

Instituto Politécnico de Coimbra

i

Table of Contents
Introduction .. 1

Description of The Minerva Cluster .. 3

Hardware Resources ... 4

Hardware Layout .. 5

Storage Layout .. 6

Some Remarks on Compute Nodes Configuration ... 7

Software Resources .. 8

Theoretical vs. Measured Performance ... 11

How to Request Access to the Minerva Cluster ... 13

Rules for the username .. 14

Generating SSH Public/Private Key Pair Files ... 14

Unix/Linux OS ... 14

Windows ... 16

Accessing the Minerva Cluster ... 19

Text Mode Access ... 19

Unix/Linux ... 19

Windows ... 20

Disconnecting from Text Mode Access .. 22

Graphical Mode Access .. 22

Unix/Linux ... 22

Windows ... 24

Disconnecting from Graphical Mode Access .. 26

Running Programs in Interactive Mode .. 27

ii

Command Line Interface .. 27

Setting Environment Variables ... 28

Running Software ... 29

Matlab ... 30

COMSOL Multiphysics .. 30

Running Programs in Non-Interactive mode .. 33

SLURM Partitions .. 33

Submitting Jobs... 34

Some SLURM Options for the sbatch Command.. 36

License Reservation .. 39

Matlab Jobs ... 41

COMSOL Multiphysics Jobs... 44

Task Farming Jobs ... 45

Monitoring and Cancelling Jobs ... 47

Job Scheduling .. 49

1

INTRODUCTION

An HPC cluster is a computing system consisting of high performance components (CPUs,

memory, network connections, and storage) that allows users to request a set of resources

needed to run computationally intensive jobs, and that runs the jobs when the requested

resources are available. The aforementioned jobs may consist of several tasks that are executed

sequentially (without any king of parallelism), of tasks that can run in parallel on a single

computer, as those not using Massage Passing Interface (MPI), or of tasks that can run in parallel

spread over several computers interconnected by some sort of network intercommunication, as

those using MPI. Regardless of the type of jobs submitted to the cluster, users do not have to be

concerned with the time that a given job will take to complete in order to submit the next one.

Instead, users submit all the jobs they want to run to a central workload manager, which, after

scheduling the jobs based on a set of established priority rules, sends them to compute nodes

when the requested resources are available.

From the above, it is clear that:

 An HPC cluster is not appropriate to run:

o A single sporadic job that does not take too long to complete in a desktop or laptop
computer (let us say, less than 30 minutes), because the time needed for the resources
to be available can be much higher than that required to run the job on a simple
desktop or laptop computer;

o Any job requiring some sort of user interface or intervention during the computation
process, because users do not have access to the jobs when they are running.

 An HPC cluster is appropriate to run:

o A single job that takes too long (let us say, more than 5 hours) to complete on common
desktop or laptop computers;

o A set of jobs that takes too long to complete (let us say, 20 jobs each of which takes 15
minutes to complete) on common desktop or laptop computers;

o Jobs that require a lot of computational resources not usually available on desktop or
laptop computers (let us say, 10, 20 or 100 CPU cores, 50 GB of memory, etc.);

3

DESCRIPTION OF THE MINERVA CLUSTER

The Minerva cluster is a High Performance Computing (HPC) cluster composed of a

management node (commonly referred to as head node) and twenty compute nodes, all

interconnected through an InfiniBand (IB) FDR1 network and a 1 Gbit/s Ethernet network. The IB

network is used for computations and for sharing the storage between the head node and the

compute nodes of the cluster (using NFS2 over IPoIB3), while the1 Gbit/s Ethernet network is used

for management and for sharing the storage with non-computing nodes (through NFS over

Ethernet).The cluster also has a physical server that provides three virtualized nodes: one for

routing the Ethernet communications, one for administration proposes, and one that serves as a

login node and that is used by users to interact with the cluster. (For details on the hardware

available, please consult the section Hardware Resources.)

All the nodes of the cluster run under the Linux Operating System (OS), namely the CentOS

distribution, version 7.3. For resource management, the cluster uses the Simple Linux Utility for

Resource Management, also known as SLURM Workload Manager4, version 16.05.2. For

management of the users’ environment variables, the cluster uses the Environment Modules

software, which is responsible for loading the environment variables required to run a given

program/computation. Moreover, the cluster has a set of software installed. (For details on the

software available, please consult the section Some Remarks on Compute Nodes Configuration.)

1
 InfiniBand (IB) is a very high throughput and low latency computer-networking communication standard used in

HPC, and capable of Remote Direct Memory Access (RDMA). In the Minerva Cluster, the IB network operates with
4 aggregate links at FDR speed (4xFDR). Each FDR link has a speed of 14 Gb/s, leading to a point-to-point speed of
56 Gb/s. (The effective rate for data transfer in 4xFDR links is equal to 54 Gb/s.)

2
 NFS stands for Network File System, and is one of many protocols used to transparently share filesystems in a

network. By “transparently share”, one means that users in a client host access files on a server host as if they
were in the client host.

3
 Internet Protocol (IP) over InfiniBand (IB).

4
 Detailed documentation can be found in https://slurm.schedmd.com/.

https://www.centos.org/
https://slurm.schedmd.com/
http://modules.sourceforge.net/
https://slurm.schedmd.com/

4

Hardware Resources

 1 Head and Storage Node (Dell PowerEdge R720)

o 2 Intel Xeon E5-2680v2 CPUs (10 cores each) @ 2.80 GHz, 15 MB cache, 8.0 GT/s QPI

o 160 GB of registered and ECC DDR-3 memory (1016 GB RDIMM, 1866MT/s, Standard

Voltage, Dual Rank, 4 Data Width)

o 1 RAID Controller with 512 MB Non Volatile Cache

o 146 GB on a RAID1 array (2x146 GB Hot-Plug SAS HDDs, with 15,000 rpm and 6 Gbit/s)

o 1 HBA PCIe SAS controller with 2 external connectors with 4 ports each, with a transfer
rate of 6 Gbit/s per port, connected to a storage unit (bellow)

o 1Broadcom 5720 quad port 1 Gbit/s Ethernet work daughter card

o 1 Broadcom 57810 dual port 10 Gbit DA/SFP+ Ethernet converged network adapter

o 1 HCA single port InfiniBand FDR 56 Gbit/s adapter card(Mellanox ConnectXR-3 VPI
MCX353A-FCBT)

o 2 Hot-Plug power supplies in redundant mode

o 1 Dell iDRAC7 management board

 1 Storage Unit (Dell PowerVault MD3220), attached to the HBA PCIe SAS controller on
the Management and Storage Node

o 2 SAS connectors with 4 ports each, with a transfer rate of 6 Gbit/s per port

o 2 RAID controllers, with 4 GB of aggregate cache memory

o 28.8 TB of raw capacity (241.2 TB Hot-Plug SAS HDDs, with 10,000 rpm and 6 Gbit/s)

o 2Hot-Plug power supplies in redundant mode

 1 Storage Expansion Unit (Dell PowerVault MD1220), attached to the Dell PowerVault
MD3220 Storage Unit

o 28.8 TB of raw capacity (241.2 TB Hot-Plug SAS HDDs, with 10,000 rpm and 6 Gbit/s)

o 2 Hot-Plug power supplies in redundant mode

 20 Compute Nodes (Dell PowerEdge R720)

o 2 Intel Xeon E5-2695v2 CPUs (12 cores each) @ 2.40 GHz, 30 MB cache, 8.0 GT/s QPI

o 192 GB of registered and ECC DDR-3 memory(1216 GB RDIMM, 1866MT/s, Standard

Voltage, Dual Rank, 4 Data Width)

o 1 Integrated RAID Controller (PERC H710), with 512 MB Non Volatile Cache

o 146 GB on a RAID1 array (2x146 GB Hot-Plug SAS HDDs, with 15,000 rpm and 6 Gbit/s)

o 1 Broadcom 5720 quad port 1 Gbit/s network daughter card

o 1 HCA single port InfiniBand FDR 56 Gbit/s adapter card (Mellanox ConnectXR-3 VPI
MCX353A-FCBT)

o 2 Hot-Plug power supplies in redundant mode

o 1 Dell iDRAC7 management board

5

 1 server for virtualized nodes (Dell PowerEdge R720)

o 2 Intel Xeon E5-2660v2 CPUs (10 cores each) @ 2.20 GHz, 25 MB cache, 8.0 GT/s QPI

o 128 GB of registered and ECC DDR-3 memory (816 GB RDIMM, 1866MT/s, Standard

Voltage, Dual Rank, 4 Data Width

o 1 RAID Controller with 512 MB Non Volatile Cache

o 300 GB on a RAID1 array (2300 GB Hot-Plug SAS HDDs, with 15,000 rpm and 6 Gbit/s)

o 1 Broadcom 5720 quad port 1 Gbit/s network daughter card

o 1 Broadcom 57810 dual port 10 Gbit/s DA/SFP+ converged network adapter

o 2 Hot-Plug power supplies in redundant mode

o 1 management board Dell iDRAC7

 1 InfiniBand switch (Mellanox MSX6036F-1SFR)

o 36 non-blocking QSFP ports, each with a latency less than 200 ns and a data transfer
rate of 56 Gbit/s

o Aggregate data transfer rate of 4.032 TB/s

o InfiniBand/Ethernet gateway

o 2 Hot-Plug power supplies in redundant mode

 2 Ethernet Switches, 1 Gbit/s (Dell PowerConnect 5548)

o 48 ports, each at 1 Gbit/s

o 1 GB of RAM and 16 MB of flash memory

o 2 stacking HDMI ports

 2 Uninterrupted Power Supplies (AEC NST5400030015)

o Three-phase units with 30 kVA each

o 40 batteries in of 9 Ah in each unit, plus 40 external batteries of 9 Ah per each unit

o Operation in redundant mode

 4 Power Distribution Units (Racktivity ES6124-32)

o Three-phase units with real time, true RMS measurements at outlet level (power,
apparent power, current, power factor, kVAh, consumption)

o Individual power-outlet switching through the network

Hardware Layout

Figure 1 depicts the hardware and network layout of the Minerva cluster. Users can only

access the login node through the public network.

6

Storage Layout

Figure 2 depicts the layout of the storage space used in the Minerva Cluster. Each compute

node has a local scratch space of ~ 93 GiB, mounted on a RAID1 system, which can be used to

store temporary files. This space has no imposed quotas and is accessible through the directory

“/scratch/local/username/”, where username is your username in the cluster. This means that this

scratch space cannot be accessed from within the login node, only through commands issued from

tasks running on compute nodes. Moreover, a process running on a given compute node cannot

access the local scratch space of other compute nodes.

The cluster also has a global scratch space of ~ 7.9 TiB mounted on a RAID0 system located

at the two storage arrays, which can be used to store temporary files. This space has no imposed

quotas, is shared by the head node to the compute nodes through the IB network (using NFS over

IPoIB), to the login node through the Ethernet network (using NFS) and can be accessed through

the directory “/scratch/global/username/”, were username is your username in the cluster.

Head/Storage
Node

Storage Array 01

Administration
Node

SAS Connections

Login
Node

Storage Array 02

Compute
Node 01

Router
Node

Compute
Node 20

InfiniBand Network

ISEC
Pivate Network

Public
Network

Management Network

Figure 1: Hardware and network layout of the Minerva cluster

7

The storage array also has a total of ~ 31.5 TiB of storage space for installed software and

home5 directories, which is mounted on a RAID6 system. These directories are exported by the

head node to the login node through the Ethernet network (using NFS), and to the Compute

Nodes through the IB network (using NFS over IPoIB).

Some Remarks on Compute Nodes Configuration

The compute nodes of the Minerva cluster have two physical CPUs (with twelve processing

cores each)that communicate through a point-to-point interconnect named Intel Quick Path

Interconnect (QPI).Concerning the memory, compute nodes have a total of 192 GiB equally

distributed between two memory banks, each being closer to one of the physical CPU sockets.

Memory that is closer to a given CPU socket is said to be local to that CPU and its cores and

is accessed by the memory controller of that CPU. Memory that is farther from a given CPU socket

is said to be remote to that CPU and its cores, and is accessed by requesting access to the other

CPU through the Intel QPI. This means that the access to remote memory is slower than the access

5
 In Unix/Linux systems, the term home directory is used to refer to the directory assigned to a given user for storing

personal files. This directory is private, and in the Minerva Cluster only the user and root (the super user) have
access to it.

Compute Node 20
Local, non-shared, Scratch Space

(100 GB in RAID1)

Compute Node 01
Local, non-shared, Scratch Space

(100 GB in RAID1)

Head Node Login Node

34.7 TB

(RAID6)

8.7 TB

(RAID0)

Storage Array 01

Storage Array 02

Shared by the Head Node through

the Ethernet network (NFS)

Shared by the Head Node through

the IB network (NFS over RDMA)

SAS connection from the storage

arrays to the Head Node

Homes, global scratch

and installed software

H
o
m

es

In
st

al
le

d
 s

o
ft

w
ar

e

G
lo

b
al

 s
cr

at
ch

Figure 2: Storage layout of the Minerva Cluster.

8

to local memory. This configuration is known as Non-Uniform Memory Access (NUMA).

Figure 3 depicts the NUMA configuration of the compute nodes, with two NUMA nodes,

along with the core numbering of each NUMA node and the Intel QPI between the two CPUs. In all

compute nodes, NUMA node 0 is local to even numbered cores and remote to odd numbered

cores, while NUMA node 1 is local to odd numbered cores and remote to even numbered cores.

Software Resources

The cluster uses the Linux OS (distribution CentOS, version 7.3), and has installed the

following software:

 SLURM Workload Manager (resource manager, scheduler and accounting)

 Environment Modules (user environment manager)

 Compilers

o GCC (versions 4.8.5, 4.9.3, 5.4.0, and 6.1.0)

 C/C++, Fortran, Objective-C/C++, and Java

 Not subjected to license availability

o Intel Composer XE (version 2016.3.210)

 C/C++ and Fortran

 2 network floating licenses

 For academic use only

Core

18

Core

20

Core

22

Core

12

Core

14

Core

16

Core

6

Core

8

Core

10

Core

0

Core

2

Core

4

Core

19

Core

21

Core

23

Core

13

Core

15

Core

17

Core

7

Core

9

Core

11

Core

1

Core

3

Core

5

N
U

M
A

 n
o
d
e

0

L
o
ca

l
to

 e
v
en

 c
o
re

s

R
em

o
te

 t
o
 o

d
d

 c
o
re

s

N
U

M
A

 n
o
d
e 1

L
o
cal to

 o
d
d
 co

res

R
em

o
te to

 ev
en

 co
res

CPU 0 CPU 1

QPI bus

8.0 GT/s

Figure 3: Layout of the NUMA architecture of the Compute Nodes. The core numbering

represented in each CPU is the logical numbering set by the OS after startup.

9

 Message Passing Interface (MPI) for parallel computing

o OpenMPI

 Version 2.0.1

 Available for all versions of the aforementioned compilers

o MPICH2

 Version 3.2

 Available for all versions of the aforementioned compilers

o MVAPICH2

 Version 2.2

 Available for all versions of the aforementioned compilers

 Libraries

o GMP (GNU Multiple Precision Arithmetic Library), version 6.1.0

o ISL (GNU Integer Set Library), versions 0.11.1, 0.12.2, 0.14, and 0.16

o MPFR (GNU Multiple-Precision Floating-point computations with correct Rounding),
version 3.1.4

o CLooG (library to generate code for scanning Z-polyhedra), versions 0.18.0 and 0.18.1

o Intel DAAL (Data Analytics and Acceleration Library), version 2016.3.310

o Intel IPP (Integrated Performance Primitives), version 2016.3.210

o Intel TBB (Threading Building Blocks), version 2016.3.210

o Intel MKL (Math Kernel Library – a BLAS library optimized for Intel processors), version
2016.3.210

o Mellanox MXM (Messaging Accelerator – for IB communications), version 3.5.3092

o Mellanox FCA (Fabric Collective Accelerator – for MPI software), version 2.5.2431

o Mellanox HCOL (Fabric Collective Accelerator – for MPI software), version 3.6.1228

o Mellanox KNEM (High-Performance Intra-Node MPI Communication), version 1.1.2.90

 Matlab (version R2016a)

o 2 network floating licenses

o Subject to academic licensing restrictions

o The following toolboxes are available

 Parallel Computing Toolbox (2 licenses)

 Distributed Computing Server (license for up to 64 workers)

 Matlab Coder (1 license)

 Matlab Compiler (1 license)

 Simulink (2 licenses)

 Simscape (2 licenses)

 Simulink Verification and Validation (2 licenses)

 Partial Differential Equations (2 licenses)

10

 Statistics (2 licenses)

 Curve Fitting (2 licenses)

 Optimization (2 licenses)

 Global Optimization (2 licenses)

 Neural Networks (2 licenses)

 Fuzzy Logic (2 licenses)

 Signal Processing (2 licenses)

 DSP System (2 licenses)

 Image Processing (2 licenses)

 Computer Vision (2 licenses)

 Mapping (2 licenses)

 Bioinformatics (2 licenses)

 COMSOL Multiphysics (version 5.2a)

o 1 network floating license for the base software and all modules

o Subject to academic licensing restrictions

o The following modules are available

 Electrical – AC/DC

 Multipropose – Optimization

 Multipropose – Particle Tracing

 Multipropose – Material Library

 Interfacing – LiveLink for Matlab

Besides the aforementioned software, additional software packages can be installed, as long

as the following conditions are all met:

 The software is for the Linux OS and compatible with the CentOS 7.3 distribution;

 The software is open source and free of charges, or being commercial, the user, project or

institution requesting it pays the fees and the license maintenance when applicable (in

this latter case, the software will be made available only to the users designated by the

user, project or institution paying the fees);

 The software is appropriate for cluster computing, which means that it must be able to

run without user intervention, namely, without user interfaces of any kind. (This does not

mean that the software cannot have a user interface.)

11

Theoretical vs. Measured Performance

The theoretical peak performance peakP of an HPC cluster is measured in FLOPS6, or more

commonly, in GFLOPS (Giga-FLOPS) or TFLOPS (Tera-FLOPS), and can be computed (in GFLOPS)by

FLOP

GHzpeak

sockets cores
P Nodes clock speed

node socket core

The value obtained with the above equation does not take into account the performance

losses due to network communications and memory usage. To account for that, performance tests

with appropriate software must be conducted. The software commonly used to conduct those

tests is the HPL package, which is a portable implementation of the Linpack's Highly Parallel

Computing benchmark.

For the Minerva Cluster, the above equation holds a theoretical peak performance of

 20 2 12 2.4 GHz 8 9,216 GFLOPS 9.216TFLOPSpeakP

the performance obtained with the HPL package, using all the 480 cores at 90% memory

occupancy, having been 8.041TFLOPSpeakP , representing an efficiency of 87.3%, which can be

considered to be in accordance with expected values7.

6
 FLOPS stands for Floating Point OPerations per Second, and is a measure of computer performance.

7
 For FDR InfiniBand, the theoretical loss due to network communications is estimated to be of 10%. (See,

http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-interconnect-
solutions.pdf.)

http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-interconnect-solutions.pdf
http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-interconnect-solutions.pdf

13

HOW TO REQUEST ACCESS TO THE MINERVA CLUSTER

All researchers (teachers and students) of the Polytechnic Institute of Coimbra can access

the Minerva Cluster for research (non-commercial) purposes, and they will have access to all the

software described in the section Software Resources. Other users from outside IPC may also use

the cluster, but fees may apply.

Users interested in using the cluster must send an e-mail to admin@laced.isec.pt, requesting

approval for an account. The aforementioned e-mail must contain a small description of the

project for which the computational resources are required, as well as the resources needed,

including: storage space, maximum computing time needed for each running job to complete,

total requested computation time, and additional software (if any) that may be necessary to

install. Users may also provide additional information that they consider pertinent.

For an estimate of the maximum computing time needed for each job to complete, users can

give the average time needed for the job to complete in a desktop or laptop computer (when

possible).For evaluating the total computation time to be requested, users must multiply the

number of jobs (njobs) to be submitted, by the number of cores needed for each job (cpjob) and

by the average time that each job takes to complete (atpjob), that is,

requested time njobs cpjob atpjob

For instance, if a given user estimates that it will submit 100 jobs (njobs = 100), each

requiring (on average) 12 cores (cpjob = 12) for 12 hours (atpjob = 12), then the total requested

time should be something like 14,400 hours. (Take into account that the total computational time

available on the Minerva Cluster for non-leap years is equal to 2,204,800 hours.)

After following the abovementioned procedure to request access to the cluster, users will be

informed if access was granted, which special resources will be allowed to use, and also with

further instructions to activate the account. Along with these instructions, a username will also be

requested for accessing the cluster, and the user’s public SSH8 key for accessing the cluster. (For

security reasons, the cluster can only be accessed by using SSH.)

8
 SSH stands for Secure SHell, which “is a cryptographic network protocol for operating network services securely

over an unsecured network.” (in Wikipedia, https://en.wikipedia.org/wiki/Secure_Shell).

mailto:admin@laced.isec.pt
https://en.wikipedia.org/wiki/Secure_Shell

14

Rules for the username

The username must be short (no longer than 30 characters), must start with a lowercase

standard character [a-z], followed by any combination of lowercase characters [a-z], underscores

[_] and numbers [0-9].Uppercase characters, spaces, accentuated characters, cedillas, dots, and

special characters will not be accepted.

Generating SSH Public/Private Key Pair Files

The method used to generate a pair of public/private SSH key pair files depends on the OS

used. The following section describes how to create SSH public/private key pair files in Unix/Linux

and in Windows. Those that already know how to create SSH public/private key pair files may skip

this. Nevertheless, please read footnote 9 on page 14.

Unix/Linux OS

Open a terminal and change to your home directory (type “cd”, without the quotation marks

and press the enter key). Create a directory named “.ssh” (type “mkdir–p .ssh” without the

quotation marks and press the enter key). Now, type

ssh-keygen –t rsa –b 2048

and press the enter key. The “-t” option allows for specifying the key type, which must be “rsa”.

The “-b” option allows to specify the length of the key (in bits), which must be equal to at least

2048. After issuing the above command, a message will appear asking for the directory to where

the public/private key pair files should be saved. Enter “/home/username/.ssh/id_minerva”

without the quotation marks, where username is your account name and id_minerva is the name

of the RSA private key file. A second message will be displayed asking for a passphrase. It is

advisable to introduce a strong passphrase9, which can contain standard lowercase and uppercase

characters ([a-z] and [A-Z]), numbers, spaces, hyphens, dots, underscores, and symbols like #, $,

9
 The passphrase is like a password for unlocking the SSH authentication mechanism, and not the password of the

user account in the Minerva cluster. When authenticating through SSH using a password (which is not allowed in
the Minerva Cluster), the password is sent (encrypted) through the network so that the remote server can verify
the authenticity of the login. When using the SSH public/private key authentication mechanism, the passphrase is
not sent through the network, being only used locally (on the computer from which the user is logging) to unlock
the private key in order for the connection to be established. So, the passphrase is just an additional security
measure that avoids unauthorized logins by someone that has gained access to the private key file of a given user.

15

and &, but should not contain accented characters and cedillas. After typing the passphrase (no

character will be output to the display while typing the passphrase), just press the enter key. A

new message will appear asking for passphrase confirmation. Just type the passphrase again, and

press the enter key. Figure 4 depicts the output produced by the abovementioned procedure.

Now, go to the .ssh directory (type “cd .ssh” without the quotation marks and press the

enter key). Type “ls -lah” without the quotation marks and press the enter key. Search for a file

named “config”. If the file exists, open it with your preferred text editor. If the file does not exist,

create it (type “touch config” without the quotation marks and press the enter key) and open it

with your preferred text editor. At the beginning of the file, add the following:

Host Minerva
 HostName minerva.laced.isec.pt
 User username
 IdentityFile ~/.ssh/id_minerva

where username must be replaced by your username in the cluster. The last entry above is critical.

You will not be able to connect if you do not specify the identity file exactly as shown above.

Figure 4: Generating the SSH public/private key pair in a Linux console.

16

Windows

To generate the public/private SSH key pair files in Windows, the PuTTY package is needed.

Download it from https://the.earth.li/~sgtatham/putty/latest/x86/putty.zip. (It is necessary to

download the ZIP compressed file containing at least the PUTTY.exe and the PUTTYGEN.exe files.

The latter one is used for generating the public/private SSH key pair files, while the former will be

used to access the cluster.)

After downloading the “putty.zip” file, extract it and run the PUTTYGEN.exe program (see

Figure 5). Select the “SSH-2 RSA” option (center bottom of the “PuTTY Key Generator” program

window), set the key size to at least 2048 (right bottom of the “PuTTY Key Generator” program

window) and press the “Generate” button. After pressing the “Generate” button, the “PuTTY Key

Generator” program window will look like Figure 6. Follow the instructions, namely, randomly

move the mouse over the blank area of the PUTTYGEN program window until the completion bar

reaches 100%. A third window is then displayed (see Figure 7) in which a passphrase can be

Figure 5: Main window of the “PuTTY Key Generator” program.

https://the.earth.li/~sgtatham/putty/latest/x86/putty.zip

17

entered. Enter a passphrase and retype it. (Please refer to section Unix/Linux OS on page 14 for

more information concerning the passphrase.)

After completing the aforementioned process, it is necessary to save the public and private

keys to files. For that, press the “Save public key” button and save the SSH public key in a secure

location, giving it the name “id_minerva.pub”. Press the “Save private key” button and save the

SSH private key file to a secure location, giving it the name “id_minerva.ppk” (it is not necessary to

type the extension, since the “PuTTY Key Generator” program will add it automatically).Please

remember that it is important to keep the private key in a secure location. See footnote 9, on page

14.

If a private key created in Unix/Linux is already available, the PuTTY private key can be

generated with the “PuTTY Key Generator” program, by selecting the “Import Key” entry in the

“Conversions” menu, and following the instructions.

Figure 6: “PuTTY Key Generator” program window, depicting the instructions to

move the mouse over the blank area in order to generate some randomness.

18

Figure 7: “PuTTY Key Generator” asking for a passphrase.

19

ACCESSING THE MINERVA CLUSTER

The cluster can be accessed both in text and graphical modes. However, due to bandwidth

constraints, the access in graphical mode will eventually be restricted to users which unequivocally

demonstrate that need. Moreover, although the access is allowed in graphical mode, the first

access to the cluster must be in text mode10. So, the next section will explain how to access the

cluster in text mode, both from Unix/Linux and from Windows.

Just one more note before continuing. The cluster has the public IP 173.137.78.233. This IP is

mapped by a Domain Name System (DNS) server to the Fully Qualified Domain Name (FQDN)

minerva.laced.isec.pt. Some Internet Service Providers (ISPs) and some institutions may block

some DNS traffic. If this is your case, the access through the FQDN will fail with a message like

“Could not resolve hostname minerva.laced.isec.pt”, and you will have to use the IP address

instead of the FQDN. Alternatively, configure your internet connection to use a public DNS server.

Text Mode Access

Unix/Linux

In Unix/Linux systems, the access in text mode is straightforward. Assuming that you have

defined (in your local host) the “config” file as in page 15, just open a console and type (and then

press the enter key)

ssh Minerva

or type (and then press the enter key)

ssh minerva.laced.isec.pt

Then, once asked, type your passphrase and press the enter key. Now you should have been

logged in to the cluster and should have a text window with a command prompt that looks like

“username@Minerva: ~ $”, where username is your username.

10

 The graphical login requires that a password is defined for the user logging in. Since user accounts are created
without a password, you must first login to the cluster in text mode to create the password, since the access in text
mode does not require, neither use, a password. This will not be necessary if you only intend to login in text mode
or if you were not allowed to login in graphical mode.

20

The first time you connect to the cluster from a given host, a long message concerning the

host key will appear. Just answer “yes”.

Windows

In Windows systems, it is necessary to use the PuTTY software already mentioned above.

Open PuTTY and, from the list box placed on the left side of the PuTTY program window (see

Figure 8), select “Connection -> SSH -> Auth”. In the private key file text box, select the “Browse”

button and search for the private key file (“id_minerva.ppk”). The option “Allow agent forwarding”

can also be selected. Leave the remaining options as they are or set them as in Figure 8.

Go back to the list box placed on the left side of the PuTTY program window and select

“Session” (the first option) as in Figure 9. In the “Host Name (or IP address)” text box type the

username and the host FQDN as username@minerva.laced.isec.pt (without the quotation marks),

Figure 8: Configuring PUTTY to use SSH public/private key authentication.

mailto:username@minerva.laced.isec.pt

21

replacing username with your username11. The “Port” text box should display 22. Leave it as is, or

change it to 22 if a different port is displayed. On the “Connection type” radio buttons (below the

“Host Name (or IP address)” text box), select SSH. In the “Saves Sessions” text box, type the name

you wish to give to this connection (for instance, Minerva), and then press the “Save” button.

Now, in the “Saved Sessions” list box, you should have an entry named “Minerva”. To connect, just

double-click the connection name that you created.

Then, once asked, type your passphrase and press the enter key. Now you should have been

logged in to the cluster, and should have a text window with a command prompt that looks like

“username@Minerva: ~ $”, where username is your username.

The first time you connect to the cluster from a given host, a long message concerning the

host key will appear. Just answer “yes”.

11

 You may also introduce only “minerva.laced.isec.pt”. In this case, the window that will be displaced will ask you for
the username.

Figure 9: Configuring PUTTY to connect to the Minerva Cluster.

22

Disconnecting from Text Mode Access

To disconnect from the text mode session, type exit at the command prompt and press the

enter key, or just close the connection window.

Graphical Mode Access

To access the cluster in graphical mode, users must have a password defined in the Minerva

Cluster. Since user accounts are created without a password, the first thing to do is to access the

cluster in text mode and define one. For that, login to the cluster using one of the procedures

mentioned in the section Mode above. After gaining access in text mode, set a password by

issuing the command “passwd” (without the quotation marks) and follow the instructions12. After

setting the password, you may close the opened connection.

Now that a password is defined in the cluster, it is necessary to have a program13 that can

connect to remote computers using the Remote Desktop Protocol (RDP), which is a proprietary

protocol developed by Microsoft. However, and as a security measure the connection is only

possible through an SSH tunnel, which must be created before connecting in graphical mode.

The next sections describe the procedures to be used in Unix/Linux and Windows systems,

both to create an SSH tunnel and to login in graphical mode.

Unix/Linux

First open a console and create an SSH tunnel to the cluster:

ssh –f username@minerva.laced.isec.pt –L 5100:localhost:3389 -N

where username must be replaced by your username in the cluster. The “–f” option requests that

ssh go to background before the command is executed. The “-L 5100:localhost:3389”14 specifies

that the port 510015 in the local host (the computer from which you are logging) be forwarded to

the port 3389 on the remote host (the Minerva Cluster). The “-N” options instruct SSH not to

12

 The password can be equal to the passphrase that you have chosen for the SSH public/private key.
13

 The program to use depends on several factors, one of which is the OS present in the computer from which the
user is connecting to the cluster. Windows systems come with a program for connecting to remote computers
using RDP, which is usually in the program menu with the name of “Remote Desktop Connection”. For Unix/Linux
systems, there are several programs that can be used (for instance, KRDC for the KDE desktop).

14
 Instead of the word localhost, you can use the IP address 172.0.0.1.

15
 The local port 5100 should work for all users. If it doesn’t, users may specify a different port of their choice.

23

execute a command on the remote host. Now that the tunnel is created, open the RDP client

program and establish an RDP connection to “localhost:5100”. The exact procedure depends on

the RPD client being used. In what follows, KRDC (for the KDE desktop) will be used to illustrate

the procedure. (For other RPD clients, please set accordingly.)

Launch KRDC from the "K Menu -> Internet -> KRDC" or open a terminal and execute "krdc".

In the "Connect to" dropdown button select "rdp". In the "Connect to" text box enter

"username@localhost:5100", where username is your username in the Minerva Cluster, as in

Figure. Now, you must have a dialog box, similar to the one shown in Figure, to set some options

for the RDP connection. From the "Desktop resolution" drop down box, select the desired

resolution (for instance, "Current Screen Resolution", if you want to use full screen mode). From

the "Color depth" drop down box, select “True Color (24 Bit)”and uncheck the "RemoteFX:

Enhanced visual experience" check box16. Press the “Ok” button to establish the connection. When

16

 The connection will fail if either the color depth is higher than 24 bits, or the “RemoteFX: Enhanced visual
experience” option is checked.

Figure 10: Establishing a connection to the cluster through KRDC.

24

asked, introduce your password and possibly the username (if in the “Connect to” text box of

Figure 10 you entered only “localhost:5100”). If the connection fails, confirm if the SSH tunnel has

been created: open a terminal window, issue the command "ps aux | grep ssh" and look for a line

containing the command given to create the SSH tunnel. If the line exists, verify the connection

options given to KRDC, otherwise create the tunnel and try connecting again.

Windows

First, open PuTTY to create an SSH tunnel to the cluster. For that, select the connection

named “Minerva” (the one that you saved when creating the profile for text mode access) from

the “Saved Sessions” list box and press the “Load” button (do not double-click the “Minerva”

profile, neither press the “Open” button). Now, go to the list box placed on the left side of the

Figure 11: KRDC dialog box to set some options for the RDP connection.

25

PuTTY program window, and select “Connection->SSH->Tunnels”. The dialog box will look like the

one presented on Figure 12. In the “Add new forwarded port” section, enter 5100 in the “Source

port” text box, and “localhost:3389” in the “Destination” text box. Leave the remaining options as

in Figure 12, and press the “Add” button. A line as the one shown in Figure 12 will appear in the

“Forwarded ports” list box. Go back to the “Session” option of the list box on the left side of the

PuTTY program window and save the configuration as “Minerva – SSH tunnel” for future use.

Double-click the saved configuration (“Minerva – SSH tunnel”) and login to the cluster in text

mode to create the SSH tunnel.

Now that the SSH tunnel is created and active, open the “Remote Desktop Connection”

program of Windows (Figure 13). Type “localhost:5100” in the “Computer” text box, type your

username in the “User name” text box (if the text box is available) and then press the “Connect”

button. The connection will be established and you will be asked to enter your username (if the

username text box was not available) and your password to the cluster.

Figure 12: Configuring PuTTY to create an SSH tunnel.

26

Disconnecting from Graphical Mode Access

Two options exist to disconnect from graphical mode.

In the first method, go to the “Kickoff Application Launcher “icon (the icon in bottom left

corner of the graphical login window) and press the left mouse button. A small window with five

icons at the bottom will appear. The rightmost icon is “Leave”. Select it and the pop up window

will show the “Log Out” button. Click it to close the session. If you close the session in this way, the

current opened windows and programs will be closed, and will not remain available for future use.

In future sessions you will have to launch them again if you want to use them.

A second method to close the session consists of closing the session in the program used to

connect through RDP, or simply closing the RDP program. Programs used to connect through RDP

typically have a ribbon that hides on top of the desktop. Move the mouse to the top middle

portion of the desktop to bring that ribbon down, and look for a button for disconnecting the

session. If you close the session in this way, the desktop will be preserved for future connections.

Figure 13: The Remote Desktop Connection interface.

27

RUNNING PROGRAMS IN INTERACTIVE MODE

HPC clusters are usually configured so that users can run processes in the so called

interactive mode, in which users can interact with programs. This allows, for instance:

 Running software for compiling, debugging and profiling programs;

 Running software with user interfaces;

 Monitoring the state of jobs submitted to the cluster.

Running software interactively is usually accomplished in one of two ways: by submitting

interactive jobs to the cluster and by running software in the login node. For now, the Minerva

cluster allows only the latter mode of execution of interactive jobs. However, keep in mind that

running jobs interactively, particularly in the login node, is not the preferred mode of operation of

an HPC cluster and should be used with great discretion, besides being subject to severe

constraints17. This is so because login nodes have scarce resources18shared by all users connected

to the cluster at a given time.

The next sections provide information on how to run programs in interactive mode in the

Minerva cluster. Please read them carefully and in sequence.

Command Line Interface

All software in the cluster must be executed through the command line interface, viz. from a

Linux terminal. Users connected in text mode will already have a Linux shell to run software. Users

that are logged in graphical mode must open a Linux terminal. For that, users may click the

console icon (the third one from the left) in the quick launch bar located at the bottom of the

graphical user interface. Alternatively, users may press the F12 key, which will bring a dropdown

command line interface. (This latter method may not work if the F12 key is assigned to some

action in the users host OS and/or if the program used for logging in graphical mode is not

configured to grab all possible keys.)

17

 In the case of the Minerva cluster, processes started by users in the Login Node that are found to consume
unreasonable resources for an unreasonable time, will be killed without notice. Moreover, users that, after being
alerted, are repeatedly found consuming unreasonable resources for unreasonable times will have the access
cancelled. (The notion of reasonable is left to the judgment of the cluster administration.)

18
 In the case of the Minerva cluster, the Login Node has only 4 CPU cores and 8 GiB of memory.

28

Setting Environment Variables

The environment variables necessary to run some installed software are not set by default.

This is due to the fact that several versions of the same software can be installed in the cluster

(e.g., the four versions of GCC referred to in sectionSoftware Resources), or the cluster may have

installed different packages that provide the same functionalities (e.g., the several C/C++ and

Fortran compilers, or the three MPI implementations referred to in sectionSoftware Resources), or

a given software may have been installed with different options (e.g., the Intel Compiler referred

to in sectionSoftware Resources), or linked with different compilers (e.g., the MPI libraries referred

to in sectionSoftware Resources). So, users must first set the environment variables needed to

execute the software they want.

To manage the environment variables needed by each installed program or software

package, the cluster uses the Environment Modules software. This software makes use of the so

called modulefiles, where the environment variables needed to run a given program or to use a

given library are defined. Besides, each modulefile may define a list of required (conflicting)

modulefiles, so that if a user loads a modulefile_1 that requires (conflicts with) a modulefile_2 that

is not loaded (is loaded), the module program will not load the modulefile_1 and informs the user

that the modulefile_2 is required by (conflicts with) the modulefile_1. Moreover, a given

modulefile can also implement the mechanism necessary to load all modulefiles that it requires.

This latter is the way in which the modulefiles of the Minerva cluster are preferably defined.

However, some deliberate exceptions may exist.

The interface for the Environment Modules software is provided by a program named

“module”, which has several subcommands, some of which must be followed by a parameter. The

command is issued as

module subcommand parameter

The most used subcommands19 are “avail”, “help”, “load”, “unload”, “list”, and “purge”, and

are summarized inTABLE 1.

19

 The full list of allowed subcommands and options is extensive and out of the scope of the current manual.
Interested users may refer to the documentation page of the Environment Modules software, located at
http://modules.sourceforge.net/tcl/module.html.

http://modules.sourceforge.net/
http://modules.sourceforge.net/
http://modules.sourceforge.net/
http://modules.sourceforge.net/tcl/module.html

29

As an example, the “module avail” command will return several module files, one of which is

“Compilers/GCC/4.9.1”. To load this module file issue the command

module load Compilers/GCC/4.9.1

To unload the “Compilers/GCC/4.9.1” module file issue the command

module unload Compilers/GCC/4.9.1

To see the details of the “Compilers/GCC/4.9.1” module file issue the command

module help Compilers/GCC/4.9.1

As a final notice, the environment variables loaded by the Environment Modules software

are set only in the shell in which they were loaded. So, if you have two shells opened (A and B) and

load a module file in shell A, the environment variables will be set only for shell A.

Running Software

To run a given program in interactive mode, you must load the needed modules and then

TABLE 1: Most used module subcommands. The parameter modulefile (if needed) is

the full name of the module file, as returned by the “avail” subcommand.

Subcommand Parameter Comment

avail Returns a list of all module files available

help modulefile Returns the help text defined in the module file

load modulefile Loads a module file

unload modulefile Unloads a module file

list List all loaded modulefiles

purge Unloads all loaded module files

http://modules.sourceforge.net/

30

issue the command to run the software. In the following, only the steps needed to run COMSOL

and Matlab will be addressed. (It is assumed that users that want to compile source code, with or

without using of the MPI libraries, know the steps needed to accomplish those tasks.)

Matlab

For running Matlab in interactive mode, load the “Programs/matlab-R2016a” module file:

module load Programs/matlab-R2016a

Once the Matlab module is loaded, issue the command

matlab

If you logged in text mode and an error message concerning the graphical interface is

displayed, issue the command

matlab –nodesktop –nosplash –nojvm

When the matlab command is issued, the system creates a 60 minutes license reservation20

and executes the Matlab software. After that time, the system will automatically close the Matlab

software without a notice. This is so because only two Matlab licenses are available for all users of

the cluster. If Matlab licenses are not available, users will be informed and asked to try again later.

COMSOL Multiphysics

For running COMSOL Multiphysics in interactive mode you must be logged in graphical

mode. Once logged in graphical mode, load the “Programs/comsol-5.2a” module file by issuing the

command

module load Programs/comsol-5.2a

Once the COMSOL module is loaded, issue the command

comsol

When the comsol command is issued, the system creates a 240 minutes license reservation20

20

 Exceptionally, a longer reservation can be created for a specific day and to start at a specific time. (Requests for
reservations should be sent to the e-mail address admin@laced.isec.pt.)

mailto:admin@laced.isec.pt

31

and executes the COMSOL software. After that time, the system will automatically close the

COMSOL software without notice. This is so because only one COMSOL license is available for all

users of the cluster. If the COMSOL license is not available, users will be informed and asked to try

again later.

33

RUNNING PROGRAMS IN NON-INTERACTIVE MODE

The preferred and main mode of operation of the Minerva cluster is by submitting jobs21 to

the SLURM Workload Manager, hereinafter referred to as SLURM, which, as stated in the overview

section of the SLURM web page, is a cluster management and job scheduling system for Linux

clusters with three key features:

 Has the responsibility for allocating access to cluster resources to users for a given

time duration so as they can perform their work;

 Provides a framework for starting, executing, and monitoring work on the set of

allocated resources;

 Arbitrates contention for resources by managing a queue of pending work.

In what follows, the basic concepts of SLURM needed to use the Minerva cluster will be

addressed. If you do not have experience using HPC clusters with SLURM, read them carefully and

in sequence and refer to the SLURM documentation web page whenever you need to. Otherwise,

please read the License Reservation if you need to run jobs requiring software licenses.

SLURM Partitions

SLURM uses the concept of partitions for grouping resources that can be allocated to jobs

being submitted, and may include constraints such as maximum number of nodes that can be

allocated by a job, maximum memory that a job can use, maximum execution time, and users or

group of users that can use the partition.

In the Minerva cluster, four partitions are defined: generic (the default partition), shortterm,

longterm and highmem. Each of these partitions define the maximum number of compute nodes

that can be allocated by jobs submitted to the partition, the default and maximum memory per

CPU that can be used by jobs submitted to the partition, the default and maximum execution time

allowed for a single job submitted to the partition, a priority for the partition, and the groups of

users that are allowed to use the partition. TABLE 2resumes all the definitions of the

abovementioned partitions.

21

 A job is a computational work that is submitted to the cluster and for which the user requests computational
resources (such as Compute Nodes, CPU cores and memory). Each job may be subdivided into several tasks, each
of which may run in one or more CPU cores.

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html

34

Submitting Jobs

To submit jobs to the cluster you must use the SLURM sbatch command. The easiest way to

accomplish this is by creating a text script file22 and pass it as an argument to sbatch:

sbatch scriptFile

Where scriptFile is the name of the text script file defining all that is necessary to run the job,

including, among many others, the resources needed to run the job, the maximum time for

execution, and the partition to which the job must be submitted. Moreover, the script file must

also contain the commands that would be given if the job was run in interactive mode, namely,

the commands necessary to load the environment variables needed by the job being submitted

and commands needed to run the job. For this, read the section Setting Environment Variables of

the chapter Running Programs in Interactive Mode.

22

 The file can be created with a text editor of your choice (the cluster has a very good one named kate with syntax
highlighting, which can be used only in graphical access mode). However, if you have to generate a considerable
number of submission files for performing similar computations, it is preferable to automate the process of
creating the script file by recurring to programming (e.g, a bash script or a Matlab script).

TABLE 2: SLURM partitions defined in the Minerva cluster. The default values are applied if the
user does not specify a value for the resource.

Resources
Partitions

generic shortterm longterm highmem

Maximum Number of Nodes per Job 10 20 5 5

Memory per CPU

[MiB]

Default 2048 2048 2048 4096

Maximum 7920 7920 7920 98000

Allocation Time

[hours]

Default 48 12 96 24

Maximum 96 24 192 96

Priority 50 100 25 25

Groups of Users Allowed all all slurmspecial slurmspecial

35

The script text file has the following structure:

#!/bin/bash

#SBATCH --time=24:00:00
#SBATCH --partition=generic
#SBATCH --licenses=name@HeadNode:N
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --mem-per-cpu=4096
#SBATCH --mem_bind=local
#SBATCH --output=/home/username/Documents/job.out
#SBATCH --error=/home/ username/Documents/job.err
#SBATCH --mail-type=ALL
#SBATCH --mail-user=someone@somewhere

cd $SLURM_SUBMIT_DIR

module load modulefile_1
module load modulefile_2
...

./full_path_to_the_command_to_execute_your_code

The first line, which must start with a shebang (#!) followed by the full path of a Linux shell

interpreter (/bin/bash in the example). This line instructs the OS which interpreter should be used

to execute the script. In the above example the interpreter is bash (/bin/bash), but it could be a

different one.

For those used with bash scripting, the lines containing “#SBATCH” may be confusing, since

lines started with an hash (#) are considered comments and are not executed by the bash

interpreter. However, the sbatch command interprets those lines as containing options. Please

refer to section Some SLURM Options below for the meaning of the options given above.

Following the options you can type any valid Linux command, including changing to

directories, exporting environment variable, and the command used to execute your code.

In the example above the first non-empty line following the SLURM options will change the

directory of the batch script to that from which the batch script was submitted (the

SLURM_SUBMIT_DIR environment variable). (At the end of the sbatch documentation page you

may find a list of all environment variables set by SLURM in the batch script shell.)

https://slurm.schedmd.com/sbatch.html

36

The two lines following the above mentioned one, will load all the modules needed by your

job. This is necessary because the environment variables of the shell from where the job is

submitted are not exported to the bash script environment. So, if your job needs some modules to

be loaded and you do not load them in the batch script, the job will fail to execute.

The last line of the batch script example given above is the line in which you effectively

instruct SLURM to do what you want him to do. So, this line must contain the exact command that

you would give from the command line to execute the program you want. If the full path to the

program executable file is not defined in the environment of the batch script, then you must give

the full path to the executable file, preceded by a dot. Moreover, the full path to the command

must end with the name of a Linux executable file.

Some SLURM Options for the sbatch Command

The full set of options available for the sbatch command is out of the scope of this manual.

Users are encouraged to consult them in the sbatch documentation page. In what follows only the

options given above (which are probably more than those that you will ever need to set) will be

mentioned:

 #SBATCH --time=24:00:0

Maximum time for which the the resources should be allocated.

The resources will be released as soon as the job ends or the execution time reaches

the specified value, in which case the job (if still running) will be killed without notice.

With D for days, HH for hours, MM for minutes, and SS for seconds, the valid time

formats specifications are: D-HH:MM:SS, D-HH:MM, D-HH, HH:MM:SS, MM:SS, MM.

If this option is omitted, the default time of the requested partition will be used (see

TABLE 2).

 #SBATCH --partition=generic

Partition to which the job is to be submitted.

One of the four partitions in TABLE 2 can be used. Remember that two of them

require special permission, which you may not have.

If this parameter is omitted, the generic partition will be used.

https://slurm.schedmd.com/sbatch.html

37

 #SBATCH --licenses=license1@headnode:N1,license2@headnode:N2

Comma separated list of software licenses that are required to run the job.

license1 and license2 are the internal names by which SLURM recognises the licenses

to be reserved and N1 and N2 are the number of licenses requested for each license

name. When requesting a license, this latter parameter is mandatory, even if it is

equal to one. The “@headnode” identifies the server that contains the information

concerning the available licenses and must be given exactly as is.

If this parameter is omitted, no licenses will be allocated to the job. For further

information on software licenses, please refer to section License Reservation. This

section not only explains why it is so important to request licenses for those jobs that

need them, but also lists all the available licenses in the cluster.

 #SBATCH --ntasks=1

Total number of CPU cores that must be reserved for running the job.

For jobs that require only one CPU core, omit this option or set it to one. For parallel

jobs that do not use MPI, set this option to the number of CPU cores used by the job

(between 2 and 24) and set the “--nodes” option below to one, otherwise your job

may be scheduled across several nodes and will run slowly as all tasks will run in the

CPU cores allocated in a single compute node (the master node), the remaining

allocated resources being wasted. For parallel jobs that use MPI, set this option to

the total number of cores used by the job (between 2 and the maximum number of

cores allowed on the partition to which you are submitting the job, which is equal to

24 times the partition maximum number of allowed nodes, as given in TABLE 2).

If this option is omitted, one core will be used.

 #SBATCH --nodes=1

Number of Compute Nodes that must be reserved for running the job.

For jobs requesting a single CPU core (--ntasks=1), omit this option or set it to one.

For parallel jobs requiring more than one CPU core but that do not use MPI, set this

option to one (see the “--ntasks” option). For parallel jobs that use MPI, omit this

option or set it to the number of desired nodes, between 1 and the maximum

number of allowed nodes on the partition to which you are submitting the job (see

38

TABLE 2), but less than or equal to the total number of requested CPU cores.

If this option is omitted, no default value is assumed and SLURM may evenly spread

the number of requested CPU cores across the maximum number of nodes allowed.

 #SBATCH --mem-per-cpu=4096

Minimum amount of memory per allocated CPU core that is required to run the job.

The default unit is MiB, but a different unit can be given by adding one of the

following suffixes: “k” or “K” for kiB, “m” or “M” for MiB, “g” or “G” for GiB.

If you specify a value higher than the maximum allowed memory per CPU defined for

the partition to which you are submitting the job (see TABLE 2), then the job will be

rejected at submission time. (Notice that if your job allocates more memory per CPU

core than the maximum allowed for the requested partition, the job will be killed

without notice.)

If this option is omitted, the default memory per CPU for the partition to which you

are submitting the job will be used (see TABLE 2).

 #SBATCH –mem_bind=local

Scheme that should be employed to bind tasks to memory.

Recommended values are “none” or “local”. The latter ensures that the memory

allocated to a task is located in the same NUMA node as the CPU core in which the

task is running, while the former allows SLURM to allocate memory that is considered

remote to the CPU core in which the task is running. (Please refer to section Some

Remarks on Compute Nodes Configuration on page 7 in which a brief explanation of

NUMA memory locality is given.)

If this option is omitted, the default value of “none” will be used.

 #SBATCH --output=/full_path_to_directory/job.out

Full path of the filename to which the standard output of the batch script shell should

be redirected.

Replace “/full_path_to_directory” by the full path to a valid directory for which you

have write permissions (typically located in your home directory) and “job.out” by a

unique filename that allow you to easily relate the file with the submitted job.

39

If these parameter is omitted, SLURM will redirect the standard output and the

standard error of the batch script to a file named “slurm-%ID.out” (%ID will be

replaced by the job ID) located in the directory from which the job was submitted.

 #SBATCH --error=/full_path_to_directory/job.err

This option is similar to the “--output” option given above, but for the standard error

of the batch script shell.

If this option is omitted, the standard error of the batch script shell will be written to

the same file to which the standard output of the batch script is written.

 #SBATCH --mail-type=option1,option2,…

Comma delimited list of message types that will be sent to the e-mail address

specified by the option “--mail-user” (below).

Valid options are NONE (no message will be sent), BEGIN (job execution has started),

END (job execution has ended), FAIL (job execution has failed), REQUEUE (job has

been requeued), ALL (BEGIN,END,FAIL,REQUEUE), TIME_LIMIT (job has reached the

allowed time limit for execution), and TIME_LIMIT_XX (job as reached XX% of the

allowed time limit for execution, with XX equal to 50, 80, or 90%).

If this option is omitted, no message will be sent.

 #SBATCH --mail-user=someone@somewhere

E-mail address to which messages specified by “--mail-type” should be sent.

If this option is omitted, no e-mail messages will be sent.

License Reservation

When a given program that requires a valid license starts to execute, the software verifies

the existence of available licenses by running its license manager mechanism, which is usually

accomplished by specialized independent software for license management. If a license is not

available the program ends prematurely, otherwise the program continues to execute normally.

So, to be able to truly perform license management in the cluster, SLURM should have the

capability to communicate with license management software, which it has not. However, SLURM

has a mechanism that, if used properly, significantly reduces the risk of sending jobs to execution

that will terminate prematurely due to license availability issues. This mechanism involves defining

40

licenses as consumable resources. These resources are defined by a unique name identifying the

software and the total and available number of licenses present at a given time.

When a job requesting for licenses (with the “--licenses” option) reaches the top of the

submission queue, SLURM verifies internally the license availability. If the number of available

licenses is less than the total number of requested licenses, the job is sent to the compute nodes

for execution and the number of licenses in use is increased. If the number of requested licenses is

not available, the job will be held at the top of the submission queue in a state of pending due to

resource availability, until all the requested resources (including licenses) are available. When that

happens, the job is sent to the compute nodes for execution. So, if you do not request licenses for

jobs requiring them, one of two things may happen:

 When the job is sent to the compute nodes no license is available and the job

terminates prematurely.

 When the job starts execution a license is available and the software starts its normal

execution. Since SLURM did not know that a license is in use, it does not update the

internal license availability count. Now, if another user submits a job to the cluster

and requests for a license, SLURM thinks that the license is available and sends his

job for execution. However, the job will end prematurely because all the licenses are

in use.

The license resources available on the Minerva cluster are resumed on TABLE 3.

TABLE 3: Licenses available for reservation.

Software Package Resource Name Number

Matlab matlab 2

Matlab Distributed Computing Server matlab-dsc 64

COMSOL Multiphysics comsol 1

Intel Composer XE intel-composer-xe 2

41

Matlab Jobs

Although Matlab can be used to run code in batch mode (without requiring a user interface),

this is not allowed in the Minerva cluster, except in very special situations which must be analysed

case by case. This is so because only two Matlab licenses are available in the cluster. As such, if

users were allowed to submit Matlab batch jobs, a maximum of two non-parallel jobs were

allowed to run in the cluster at any given time, and a maximum of 64 out of the 480 cores

available in the cluster could be used at any given time for Matlab parallel batch jobs. Since

Matlab is widely used in several research areas, allowing running Matlab jobs in batch mode

would be a tremendous waste of the cluster’s computing power. This does not means that users

cannot run Matlab jobs in the cluster, but that to do so users must compile their Matlab code23

(Matalb available on the cluster has the Matlab Coder and Matlab Compiler toolboxes) and then

submit the Matlab generated executable files to the cluster to be run with the Matlab runtime

engine, which is not subject to licensing constraints.

Compiling Matlab Code

Compiling Matlab code to be run as a standalone application is very simple, and can be

performed both from the Linux command line24 and the Matlab command prompt by issuing the

command

mcc –m matlab_code_file

where matlab_code_file (without the .m extension) can be a script or a function, which can accept

parameters. Moreover, your function may call other Matlab functions (either Matlab native

functions or functions developed by you). If this is the case, the path to the directories where are

located all the functions needed by your code must be in the Matlab path or the compiler will not

be able to find them.

Once your Matlab code is compiled, you can submit it to the cluster as explained above by

loading the Matlab Runtime module, and then execute the standalone generated file. So, your

submission file could be something like (set all the parameters that you need as explained in

section Some SLURM Options for the sbatch Command)

23

 Remember that the Matlab installed on the cluster has the Matlab Coder and the Matlab Compiler toolboxes, with
which you can create libraries and standalone applications that can be run with the Matlab Runtime engine.

24
 Do not forget to load the module required to run Matlab (Programs/Matlab-R2016a).

https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/compiler.html

42

#!/bin/bash

#SBATCH --time=24:00:00
#SBATCH --partition=generic
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --mem-per-cpu=4096
#SBATCH --mem_bind=local
#SBATCH --output=/home/username/Documents/job.out
#SBATCH --error=/home/ username /Documents/job.err
#SBATCH --mail-type=ALL
#SBATCH --mail-user=someone@somewhere

cd $SLURM_SUBMIT_DIR

module load Programs/matlab-R2016a-Runtime

./full_path_to_the_matlab_standalone_application [opt1 opt2 opt3 …]

where the full_path_to_the_matlab_standalone_application includes the full directory path and

the name of your Matlab standalone executable, and opt1, opt2, opt3, … (without the square

brackets),are possible input arguments required by the Matlab function that originated the

standalone Matlab executable. Since the input arguments parameters are passed to the Matlab

standalone application as text, your Matlab code must convert them to the appropriate type.

Moreover, input arguments as arrays, strings, or any other type not consisting of isolated numbers

or words must be passed enclosed in quotation marks. What was said applies only to the function

that you compile.

From the above, you may wonder if you have to recode your Matlab function in order to be

compiled and run as a standalone application. The answer is yes, but not too much. You can do

this easily in two ways, one of which implies recurring to the Matlab function isdeployed, which

returns one if the code is running as a standalone application, or zero otherwise, and the other

may or may not use the aforementioned function. Both methods will be briefly explained.

Suppose you have a function named SomeThing that accepts a number and a matrix as input

arguments. One way to prepare that function to be run both inside Matlab and as a standalone

application is to code it as

43

function SomeThing (myNum, myArray)

 if (isdeployed)
 myNum = str2num(myNum);
 myArray = str2num(myArray);
 end

 …(do whatever the function was supposed to)

end

Now your function is ready to run both as a standalone application and natively in Matlab.

One other way to accomplish the same goal without changing the original function would be by

defining a second function (named SomeThing_deployed, for instance) which converts the input

arguments to the appropriate types and then calls the original function:

function SomeThing_deployed (myNum, myArray)

 if (isdeployed)
 myNum = str2num(myNum);
 myArray = str2num(myArray);
 end

 SomeThing(myNum, myArray);

End

Running Parallel Matlab Jobs

For running parallel Matlab jobs you have first to develop your code for making use of the

Matlab Parallel Toolbox. This can be performed on your own computer for testing proposes (as

long as you have a valid Matlab license with the aforementioned toolbox), or using the Matlab

available on the cluster for testing proposes.

Once your code is fully developed and tested for running in parallel, it is necessary to

configure it for submission to SLURM clusters. This requires defining a configuration file for generic

schedulers. If you need this file and further instructions to run Matlab parallel jobs, please contact

the cluster administration through admin@laced.isec.pt.

file://vboxsrv/couceiro/Dropbox/LaCED/UserManual/admin@laced.isec.pt

44

COMSOL Multiphysics Jobs

Although COMSOL Multiphysics allows submitting simulations from the graphical interface

to HPC clusters with SLURM, in the Minerva cluster this is not possible. So, the only way to submit

a COMSOL job to the cluster is by running the job in batch mode.

For jobs not requiring parallel computation (i.e., that will use a single CPU core), you can

submit the job with a batch script similar to the one shown below

#!/bin/bash

#SBATCH --time=24:00:00
#SBATCH --partition=generic
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --mem-per-cpu=4096
#SBATCH --mem_bind=local
#SBATCH --output=/home/username/Documents/job.out
#SBATCH --error=/home/ username /Documents/job.err
#SBATCH --mail-type=ALL
#SBATCH --mail-user=someone@somewhere

cd $SLURM_SUBMIT_DIR

module load Programs/comsol-5.2a

comsol batch -job job_name -inputfile /full_path_to_input_file \
 -outputfile /full_path_to_output_file

where job_name is the name of the COMSOL batch job you want to run and is needed if your

COMSOL simulation defines batch jobs, otherwise you may remove the “-job job_name” option.

The full_path_to_input_file is the full path to the COMSOL file containing the simulation you want

to run and full_path_to_output_file is the full path to the output file in which you want that

COMSOL saves the results of your simulation. (The backslash at the end of the last but one line of

example given above can be omitted if you give all the parameters in a single line, otherwise you

must end each line but the last with a backslash.)

For running your simulation in parallel, please refer to the COMSOL Multiphysics manual.

Very briefly, add cluster computing to your study, choose solvers that can take advantage of

parallel computing, set the options of the batch script given above so that the appropriate number

45

of CPU cores are requested for your job, and replace the last line of the batch script example given

above by

comsol -clustersimple batch -inputfile /full_path_to_input_file \
 -outputfile /full_path_to_output_file

More advanced options can be given. If you need help on using COMSOL Multiphysics for

running parallel jobs, please contact the cluster administration through admin@laced.isec.pt.

Task Farming Jobs

Suppose that you have a considerable number of independent but similar jobs requiring a

single CPU core, all of which take, in theory, the same time to complete. In order to materialize, let

us say that you have 100 independent jobs consisting in running the same software with different

input parameters, as, for instance, in Single Program Multiple Data (SPMD) problems, or

parameter sweep problems. To submit those jobs you need to create 100 identical submission

scripts requesting the exact same resources, loading the exact same environment modules, and

running the exact same program, but differing in the parameters passed to that program, and then

submit the 100 jobs to the cluster. You could automate the process of creating the 100 submission

scripts, create a shell script containing one submission command per line, and then execute the

shell script to submit 100 independent jobs. Nevertheless, you would end up with 100 submission

scripts one script for submitting all the jobs at once, 100 jobs in the submission queue. Instead of

the aforementioned procedure, you can use task farming to accomplish the same goal, with the

advantage of having to create only two files (one with the submission script and the other

consisting of a file containing the list of tasks), and submitting and monitoring a single job.

The Minerva cluster has a task farming program25, which is a simple parallel program that

takes a list of independent tasks from an ASCII text file, distributes the first N tasks through the N

CPU cores reserved by your job, and sits waiting for tasks to complete. As soon as a running task

(set of running tasks) completes execution, the task farming program takes the next task (set of

tasks) and send it (them) for the CPU cores that were released. The process continues until all the

tasks are executed, at which time the job is finished.

25

 Kindly provided free of charges by Miguel Afonso Oliveira, HPC Systems Support Analyst at the Imperial College
London.

file://vboxsrv/couceiro/Dropbox/LaCED/UserManual/admin@laced.isec.pt

46

Taking our example of 100 independent but similar tasks given above, the submission script

could be something like

#!/bin/bash

#SBATCH --time=48:00:00
#SBATCH --partition=generic
#SBATCH --ntasks=20
#SBATCH --output=/home/username/Documents/job.out
#SBATCH --error=/home/ username /Documents/job.err
#SBATCH --mail-type=ALL
#SBATCH --mail-user=someone@somewhere

cd $SLURM_SUBMIT_DIR

module load taskfarm

mpiexec taskfarm /full_path_to_the_taks_list_file

Notice that the submission script requests 20 CPU cores. As such, for running the 100 tasks

of our hypothetical example, the job should request at least 5 times more computation time than

the average time taken by a single task to complete. Notice also that a single file containing the

standard output of the batch script and possibly a single file containing the standard error of the

batch script, will be created, instead of 100 files for the standard output and possibly 100 files for

the standard error, as would be the case if you have submitted 100 independent jobs instead of a

single task farming job.

Assuming an SPMD model in which the program to be run is called someProgram, locate in

“/some_full_path/” and accepts a single numeric value that goes from 1 to 100, the file containing

the tasks list would be something like

./some_full_path/someProgram 1;

./some_full_path/someProgram 2;

./some_full_path/someProgram 3;

./some_full_path/someProgram 4;
 ⁞
./some_full_path/someProgram 97;
./some_full_path/someProgram 98;
./some_full_path/someProgram 99;
./some_full_path/someProgram 100;

47

Each line of the task file must end with a semicolon and can contain more than one

command, as long as all the commands are separated by a semicolon and a space. To materialize,

if before running the someProgram program you need to change to a given directory, like

“/home/username/dir_X”, where username is you username in the cluster and X could take values

between 1 and 4, then the file containing the tasks would look like

cd /home/username/dir_4; ./some_full_path/someProgram 1;
cd /home/username/dir_2; ./some_full_path/someProgram 2;
cd /home/username/dir_4; ./some_full_path/someProgram 3;
cd /home/username/dir_1; ./some_full_path/someProgram 4;
 ⁞
cd /home/username/dir_3; ./some_full_path/someProgram 97;
cd /home/username/dir_2; ./some_full_path/someProgram 98;
cd /home/username/dir_3; ./some_full_path/someProgram 99;
cd /home/username/dir_4; ./some_full_path/someProgram 100;

A final notice is required. The task farming program available on the Minerva cluster requires

that the number of CPU cores requested by the job be even and that the number of tasks be

multiple of the number of requested cores. The task farming program will start by verify if your job

complies with these two requirement and if not terminates with a message informing that the

number of cores must be even or a message informing that the number of tasks is not a multiple

of the number of cores.

Monitoring and Cancelling Jobs

SLURM has a set of tools that allows users to monitor and cancel their jobs in the cluster,

each of which has a more or less extensive list of options that can be used. The complete list of

tools and their options is out of the scope of the current manual. In what follows only the most

relevant tools and their options will be given. For more detailed information of the options

available for each command, please consult the manual of the command by issuing the command

“man command”, where command should be replaced by the name of the command.

One of the most useful tools for monitoring jobs is the squeue command. This command

allows viewing the order in which your processes were placed in submission queue. The two main

options are “-a” for viewing the complete list of jobs, and “-u username”, where username is your

username in the cluster, for viewing the jobs that you submitted.Figure 14shows an example of

48

the output of the command “squeue –a”.

By default, the output of the squeue command will produce a list with eight columns

containing the ID of the job, the partition to which the job was submitted, the name of the batch

script given as input to the sbatch command, the user that submitted the job to the cluster, the

state in which the job is, the number of nodes that are allocated to the job, and the list of compute

nodes in which the job is running and/or the reason for which the job is held in the submission

queue. Concerning the job state, this can be one of: PD (pending), R (running), CA (cancelled), CF

(configuring), CG (completing), CD (completed), F (failed), TO (timeout), NF (node failure) and SE

(special exit state).

Another useful command for monitoring jobs is the sacct command the output of which is

depicted in Figure 15. By default, the acct command displays information for jobs submitted by the

user that issues the command. For showing information for all jobs you can use de the “-a” option

and for viewing information of a particular job you use de “–j jobID” option, in which jobID should

be replaced by the ID of the job.

For cancelling jobs, you use the scancel command. For cancelling a single job with a given ID,

use the command “scancel –j jobID”, where jobID should be replaced by the ID of the job. For

cancelling all of your jobs, use the command “scancel –u username”, where username should be

replaced by your username in the cluster. Notice that users can only cancel the jobs that they have

submitted.

Figure 14: Default output of the squeue command.

Figure 15: Default output of the sacct command.

49

Job Scheduling

Jobs submitted to the cluster are ordered in the waiting queue according to a priority of

execution such that jobs with higher priority values are placed in higher positions of the queue and

will start executing sooner. In the Minerva cluster, the priority of a job is constantly computed by

the SLURM multifactor plugin (see the documentation for details)as a weighted sum of the

following parameters, each of which has a priority factor comprised between zero and 1:

 Partition: The priority factor, with a weight of 1,000 in the final priority of the job, is

equal to the partition priority (see TABLE 2 on page 34) divided by the higher priority

of all the partitions. So, the partition priority of a given job is constant throughout the

time the job is waiting in the queue.

 Fair-Share: The fair-share factor of a user/account, with a weight of 10,000 in the

final priority of the job, is based on the difference between the resources granted to

that user/account and the resources consumed at any given time by that

user/account. So, the fair-share priority of a given job that is waiting in the queue

may vary over time if the user/account that submitted the job has other jobs running

in the cluster.

 Job Size: The job size priority factor, with a weight of 1,000 in the final priority of the

job, correlates to the number of nodes or CPU cores requested for the job, such that

a job requesting all the cores of the cluster (480) will have a job size factor of 1. So,

the job size priority of a given job is constant throughout the time the job is waiting

in the queue.

 Job Age: The job age priority factor, with a weight of 1,000 in the final priority of the

job, is computed as the ratio between the time that the job has been waiting in the

queue and a time limiting factor, which is equal to seven days. So, job age priority of

a given job that is waiting in the queue increases over time, favouring then jobs that

are waiting in the queue for longer times.

From the above, the final priority of a given job in the Minerva cluster is a 32-bit integer

computed by:

https://slurm.schedmd.com/priority_multifactor.html#config

50

_ _

_ _

_ _

_ _

Job Priority Partition Weight Partition Factor

FairShare Weight FairShare Factor

JobSize Weight JobSize Factor

JobAge Weight JbAge Factor

Since SLURM constantly computes the priority of all jobs that are waiting in the queue, these

can be requeued at any time.

Besides the above mentioned mechanism to compute job priority, the Minerva cluster also

uses the SLURM backfill plugin. With this plugin, jobs having a lower priority can be sent to

execution if by doing so the expected time for sending higher priority jobs for execution is not

delayed. The expected time for sending a job to execution is computed taking into account the

time requested for computation of jobs in pending state, the remaining time allowed for execution

of jobs that are already running in the cluster, and the resources that jobs that are running will set

free at the end of the time requested for computation. So, to take advantage of the backfill

mechanism, users should specify with some accuracy the time requested for their jobs to run.

However, do not request time to accurately, because if your job will be killed without notice if it

has not finished by the end of the requested time.

To see the priority of a given job, you can use the command “sprio –j jobID”, where jobID is

the ID of the job. This will work only for jobs that are in the pending state and will show the job

priority along with the priorities of the abovementioned individual factors used for computing the

job priority.

To see your fair-share at any given time use the command “sshare –u username”, where

username should be replaced by your username in the cluster. This will also show you the

fair-share of the accounts to which you are associated.

